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ABSTRAC’J’

A review is presented describing our recent work to correlate the first hypcrpolarizability, ~,
of organic materials with the molecular parameter bond length alternation (BI .A). Donor-acceptor
pol ycnes displaying a wide 131 .A range were synthesized. For a par[icLdar  chromophorc,  B1.A was
fine-tuned by varying solvent polarity. “1’hc degree of B] .A was analyz,ec]  by X-ray diffraction,
1] I-NMR and C]cctrollic  absorption  sl)cctroscopy.  Non-resonant, solvent-dcpcnctcnt, etectric field

induced second harmonic generation (1{1:1S11) n~casuremcnts  were performed to probe the variation
in the second-order nonlinearity as a function of ground-state polarization. “l’he resulting trend,
WhiCh iS fll]]y CO1lSi  StC1lt With thCOrCtiCa] predictions, idC1ltifiCC]  ChrOmOphOrCS pOSSeSSil)g
optimized positive and negative hypcrpolarizabilitics. An optimized chromophore  was
incorporated in a polymer matrix and polecl. The rcs[llting  electro-optic  coefficient was found to be
significant] y enhanced rclat  ivc to the longfx d]romophore, 1 )ispcrsc Reel 1.

]ntroctuct  ion

Optimizing the first hypcrpolarizability, ~,
donor/acceptor strength for a given conjugated

of donor-acceptor con]pou  nds requires a specific
bridge [ 1,2]. l;or donor-acceptor polyenes, ~ can

be maximized when an optimal degree of mixing between ncLltral  and charge-separated canonical
resonance forms exists. This degree of mixing is related to the donorl~cccptor strcng[h and a
molecular parameter, bond length alternation (J31 .A), defined as the difference bet wccn the average
cwbon-carbon single  ant] double bond lengths in the polymethinc backbone. l’he degree of B1 .A
arises from the linear combination, or mixing, of the two-limiting charge-transfer resonance forms
of the molecule, l:igure  1, [3,4].

l~or unsubstituted  polyenes,  or chromophores  with weak donorsfi~cceptors,  the neutral
canonical form is the dominant contributor to the ground state (A, I~igurc  1), resulting in large
posit ivc B] ,A [3], As the acceptor streng(h increases (B), the charge-separated resonance sttLlctL~re
contributes more to the ground state resulting in smaller B1. A [3] until both resonance forms
contribute equally (Q and the ground-state structure possesses essentially zero BI.A analogous to
a symmetrical cyaninc [5]. increasing the ground-state polarization fLwlhu  (1)) results in the
charge-separated canonical form dominating the ground state, leading to negative 131 .A [6].
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l~igure  1. contribution of ncutra] and charge-separated resonance forms to the groLmd state. 111 .A
values, tuned by varying donor~~cceptm  strengths, were determined by X-my diffraction [3, 5, 6].

The relationship between ~ and }11 .A can be understood within the context of a two-state model
[7] in which the dominant component of the ~ tensor is given as:

(1)

where g (c) is the index of the ground (charge-ttwnsfer excited) state, p and 1; arc the dipole matrix
clcmcnt  and transition energy bctwccn  two subscripted states, rcspcctivc]y.  It has been predicted
[ 1,8] that as a function of increasing polarization (decreasing 111 .A), starting from the polyene  limit
(maximum positive B] .A): (i) //CC - //gg, starts positive, increases and reaches a positive peak
(region A, l’igure  2); (ii) dccrcascs, (region B); (iii) continues to decrease, passing through zero at
the cyaninc-limit,  becomes negative (region ~); (iv) becomes increasingly negative (region I)) and
(v) exhibits a negative peak and decrcascs  in magnitude (region It). It is also predicted that /~~C and
l/h’~C  peak at the cyaninc-limit  (Iligurc  2) and thus ~, which is a product of these three terms,
exhibits positive and negative peaks closer to the cyanine-limit  than where (&c - //gg) peaks. The
molecular second-order nonlinear optical propcr(ics  of a series of donor-acceptor polyencs have
been evaluated by }il:lSl 1 to test the s(ructurc-propcr(y  relationships proposed in liigurc  2.,

Molecules 1-6 (I;igurc 3) were examined since strong evidence exists that they cover
approximately the BI. A range A-E  (Iiigurc 2.) 19]. I/or example, 111 .A values for 1 and 2,
dctcrmincd by X-ray crystallograp}ly,  are 0.05 ~ and 0,015 ~ rcspcctivcly, suggesting that 1 lies
in region A and 2 in region 1;. X-ray crystallographic studies on 4, possessing a stronger
acceptor than 1 or 2, reveal a B1,A of -0.014 ~, suggesting that 4 lies in region  ~. Adclitiona]ly,
3 and 4 exhibit positive solvatochromism in nonpolar so]vcnts  and negative solvatochromism in
polar solvents (Table 1), indicative of 111.A changing sign as a function of solvent polarity [11].
“1’hcse data suggest that 3 and 4 fi~ll in region ~. compounds  5 and 6 arc negatively
solvatochromic in all solvents usec]. l:urthcrmore, the large 1} 1-111 coupling constant across the



central  carbon-carbon bond is consistent with a mms double bond as depicted in the z,wit~erionic
form of 5 and 6 (Figure 3, right). These data imply that 5 falls in region 1) and that 6 falls in 1) in
moderatepol  aritysol  vcntsand  possibly region l!inhighly  polar solvents. l~ora  given molecule,
111 .A can be fine-tuned by varying solvent polarit y since mixing of the neutral and charge-separmxl
canonical forms is sensitive to this perturbation [3,4,11]. lior example, the progression of 5 and 6
towards a more charge-separated struct urc with increasing solvent polarity is evidenced by the
increase in the. 111-] 11 coupling constant across the central carbon-carbon bond (Figure 4).
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Figure 2. l>ependence  of the ground-state strLlctLm  on ~] :C ( -  -

-  -)> V~~:e  (“”””)> l~ec -  /~gg  (- -  )

and ~ ( —) [ 1,8]. Ground-state polarization increases from A-E. “1’he point where (JICC  - }Igg)
and ~ are m-o corresponds to the “cyanine-limit”  of zero B] .A (center of ~).

Non-resonant 111/1S1 I measurements of p“~ were performed, at 1907 nm, on 1-6 in solvents
of varying polarity using apparatus and mcthoclo]ogy  dcscribcd  elsewhere [ 12]. The p“ p product
and absorption maxima as a function of the normalized solvent polarity parameter 1“11’(30) are
presented in Table 1 [9]. “l”he p.~ product of 1 increases with solvent polarity, consistent with the
trend expcctcd given the large 111 .A from previous structure determinations [3]. The stronger
dicyano  moiety (2) increases the contribution of the charge-scpatated  canonical form to the ground
state, }31 .A decreases and p.~ exhibits a positive peak (region 11, IJigurc 2). A positive peak in
p.~ has been reported previously [ 1]. increasing the acceptor strength further by utilizing the
diethylbarbituric  (3) and dielhylthiobarbituric  acid (4) moieties, results in decreasing
h ypcrpolarizabilit  ies with increasing solvent polarity. in fi~ct,  for 3 in the most polar solvent and 4
in nonpolar solvents p o ~ chf.?ngm sign,  consistent with the struet ura] assignment of ~ and 4 being
in rc.gion ~, as a result of solvent stabilization of the charge-separated canonical form tuning  111 .A
through the cyanine.-limit  [11]. “J’hc values of klllax  for 4 arc. maximized when p. ~ is close to
mxo, consistent with the relationship dcpictcd  in Jiigure 2.. As the donorr~cceptor strength is
further increased (5 and 6), a negative peak in ~1.~, with increasing solvent polarity, is observed
consistent with the predicted behavior for region 1).
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}iigure 3. Canonical charge-transfer rescmancc  structures for the dcmor-accej]tor polycncs
invest igatcd.  I{lcct t-on donorbwce.ptor  strength in the ncut t-a’ form increases from 1-6. 1 {t E C2115
and ]]U = n-~41 19.
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- ●  barbituric  acid, 5.
-- E! -- thiobarbituric acid, 6.
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l;igurc  4. 1 }]-]}] ~OLll)]iIl~  ~ollstan~s  for 5 and 6 as a fLIIICtion  of solvent  polarity [ 1 ()]. l’hc trend

of increasing coupling constant with increasing solvent polarity is indicative of an evolution
rewards a more charge-separated ground state (1 ;igurc 3, right).



“J’able 1. Solvcllt-de~Jcl~deIlt  p“~ (units  of 1(1-48 CSU) for 1-6. The estimated precision in p“~ is
~ 1 ()~O.  ‘] ’he p~]arjty of t}lc solvents inCrcasc (the Contributiotl  of the charge-separated resonance

structure to the ground-state gcomct  ry increases) from left to right. Normali  ZCCJ lkl@)) values of
the solvents [ 10] are presented within parentheses. “l’he maximum absor-plion  wavelength (hmax,
units of nm) of the chromophorcs  are given below the p“ ~ values. insolubility precluded the
determination of p.~ for 5 and 6 in certain solvents.

eCC14
Mo]ccwlc 0.0525
1 p.p 299

Lmax 396
2 p.fl 332
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‘J’hc elcctro-optic  coefficient, r~~, of the optimized p“p chromophorc,  2, was measured at
820 mm using the thin-film cllipsometric  technique [ 13]. ‘1’hc elcctro-optic  coefficient is presented
in ‘J’able 11 along with the value for the conventional chromophorc  ])ispcrsc  Red 1 (DRl ) for
comparison. IJcspite DR 1 being 4 atoms longer, its clcctro-optic coefficient is significantly less
than that of the optimized chromophorc. “1’his  comparison unclcrscorcs  the benefit of the proposed
strllcltlrc-JJroJ3cr(y  relationship in realizing  chronloJilorex  J>ossessing enhanced ]lOJlliIMirhiCS.

‘J’ab]c 11. lilcctro-optic cocfficicnts,  coI~jugation  lengths  and maximum absorption wavelengths for
I>RI and 2 in PMMA, both samples having identical chromophorc loading (2 JNOIC  %) ancl poling
condii  ions (108 Vim at 12(FK). Sample prcJ~arat  ion details arc rcJ>ortccl  e.lscwbcre [ 14].

Molecule 1 X31gth I L I r~~
max I

]n summary, donor-acceJ~tor  po]ycncs  of COnlJ)arab]e  conjugation length have been
synthesized and their solvent-dependent, non-resonant hyJmrpolariz,abi  litics  measured.
Qtimization  in a positive and negative sense, as well as a sign change in p.p, was observed.
“1’hcse observations were cxJJlaincd by nlolecLllar  structure changes resulting from the variation of
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8 mixing of neutral and charge-separated resonance forms upon changing dcmorfidcceptor  streng(hs

and solvenl polarity. ‘1’he trmcl of these gcolllctry-dcJJctldcllt  hypcrpolari7abilitics  was fully
consistent with theoretical predictions. An optimized p. P chromophorc  was incorporated in a
polymer host, poled and the resulting elcctm-optic coefficient nwasLmd. “l’he optimized molecule
exhibited an enhanced response compared to the lon~erj conventional chmmophore DR 1.
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